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Detection of a PSK Signal Transmitted Through 

a Hard-Limited Channel 
PRAVIN C. JAIN AND NELSON M. BLACHMAN 

Abstract—This paper considers the problem of the detection of a 
binary phase-modulated carrier which has been transmitted along with 
noise through a hard-limiting repeater, corrupted by additional noise, 
and demodulated by cross correlation and sampling at the receiver. Three 
equivalent expressions are obtained for the error probability of the 
receiver output. Two of these expressions take the form of an infinite 
series involving either confluent hypergeometric functions or modified 
Bessel functions. A third form allows representation of the error prob- 
ability in terms of Rice's le function. In the special case where the signal- 
to-noise ratios Pi^ and p2^ at the limiter and receiver inputs are equal, 
the error probability is simply 

Pe = iexp i-pi^). 
Asymptotic expressions for the error probability for large and small 
signal-to-noise ratios are also derived. The error probability is found to 
be smaller than that of a linear system for all practical values of limiter 
and receiver input signal-to-noise ratios. The optimum repeater non- 
linearity is investigated and is shown to be a limiter at such signal-to-noise 
ratios. 
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I. INTRODUCTION 

THE MODEL for the communication system to be 
considered in this paper is shown in Fig. 1. A binary 

phase-shift-keyed (PSK) signal is assumed to get from the 
transmitter to the receiver via a hard-limiting repeater in 
the transmission channel. Additive Gaussian noise is in- 
troduced on both the uplink (repeater noise) and the down- 
link (receiver noise). Detection of the signal at the receiver 
is accomplished by a cross correlation-and-sampling op- 
eration. The receiver is assumed to heterodyne the received 
signal with a correctly phased local reference and to base its 
decision on the sign of the baseband output of a zonal low- 
pass filter that is sampled once during each data bit. 

The results for this single-sample detection model can 
be extended to include the effect of postdetection integration 
over the full bit duration which is customary in correlation 
detection of binary PSK signals, via the commonly assumed 
multiple sampling and majority decision [l]-[3]. This is 
achieved by approximating the integration operation by a 
sum of TW independent receiver-output samples taken at 
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Fig. 1.   Block diagram of PSK system. 

the Nyquist rate and supposing that on the basis of these 
samples, TW independent decisions are made on each bit; 
a final overall decision is then taken on that bit by a majority 
vote. It is preferable that TM^—the product of the bit dura- 
tion times the signal bandwidth—be odd. The probability 
of error P^ is then equal to the probability that more than 
half the decisions will be in error and is given by the 
binomial distribution 

(TW-1)I2   /JXY\ TW-k (1) 

where P^ is the probability of error for any one sample. 
Jacobs [1] has plotted PE as a function of TW^l - P^y 
for various values of TW. In this paper we determine P^ 
on the understanding that the error probability with post- 
detection integration can then be calculated from (1) or by 
using the plots given by Jacobs. Since P^ is a monotonic 
function of P^, the conclusions reached in this paper con- 
cerning the helpfulness of limiting with single-sample detec- 
tion also apply with postdetection integration. This is in 
agreement with the results and conclusions of Davisson and 
Milstein [2] and Lyons [3]. 

The calculation of the error rate with a hard-limiting 
repeater is of considerable interest both because limiters are 
often used at the inputs to traveling-wave-tube amplifiers 
when maximum output power is demanded of them and 
because at reasonably high signal-to-noise ratios, as we shall 
show, for a given average repeater output power, the error 
probability is smaller with a limiting repeater than with a 
linear one. We shall also see that a limiter is the optimum 
repeater nonlinearity at high signal-to-noise ratios. Since 
this superiority of the limiter seems to strike some com- 
munication theorists as incredible, we begin with some 
heuristic comments on this matter. 

A. The Desirability of Limiting 

Although cross correlation detection of binary PSK 
signals in noise is optimum, it is optimum only among the 
things that can be done solely at the receiver. In the present 
context optimization would have to include the best signal 
processing by the repeater for a given average repeater 
output power. Because keying simply switches the carrier 
phase between 0 and 180°, the repeater should waste no 
power on the quadrature component of the noise and should 

put all of its power into retransmitting the inphase com- 
ponent of the signal-plus-noise, which is a sufficient statistic 
in regard to mark-versus-space decisions. The optimum 
repeater will therefore cross correlate, decide, and regenerate 
the signal corresponding to its decision. 

It is easy to see that such a signal-regenerating repeater 
will yield performance superior to that of a linear repeater. 
For example, if the up and downlink signal-to-noise ratios 
are both reasonably high and are equal, the net overall 
signal-to-noise ratio at the receiver with a linear repeater 
will be 3 dB less, making the error probability many times 
that of a regenerating repeater, where the error probability 
is merely doubled by the two decisions in tandem. In fact, 
if we compare a chain of linear repeaters with a chain of 
regenerating repeaters along the path from the transmitter 
to the receiver with the product of their signal-plus-noise- 
to-signal ratios held constant (being equal to the overall 
net signal-plus-noise-to-signal ratio for the linear chain), we 
see that the error probability remains fixed for the linear 
system as the number of repeaters is increased. However, it 
approaches zero for the regenerating repeaters, as the signal- 
to-noise ratio for each repeater becomes proportional to the 
number of repeaters, thus reducing the error probability for 
each to a very small value—going to zero even when 
multiplied by the number of repeaters. 

At high signal-to-noise ratios the inphase output com- 
ponent of a limiter will be very nearly the same as that of a 
regenerating repeater, but it is not possible to get a vanishing 
error probability with a chain of limiters, since the phase 
errors of their outputs (due to the quadrature noise) will 
accumulate in exactly the same way that the inphase com- 
ponent of the noise builds up in a chain of linear repeaters. 
An error results with limiters when the quadrature noise 
components take the signal phasor a quarter of the way or 
more around a circle about the origin, whereas in the linear 
case an error occurs when the inphase noise totals more 
than the length of the signal phasor and is opposite in sign. 
Since a 90° arc is njl times as long as the radius, limiting 
provides an improvement of nearly 20 log,o njl = 3.82 dB 
over a linear system—"nearly" because a 90° phase change 
in either direction will produce an error. Having established 
the plausibility of an error probability reduction due to 
limiting at high signal-to-noise ratios, we now proceed to 
treat this topic more thoroughly by means of a detailed 
mathematical analysis. 
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In Section II we will obtain first an expression for the 
otitput of the zonal low-pass filter in Fig. 1 and then derive 
three equivalent expressions for the error probability in- 
cluding asymptotic results for large and small signal-to-noise 
ratios. Numerical results for the error probability are pro- 
vided in Section III, and the performance of a hard-limited 
system is compared with that of a linear repeater system. 
The investigation of the optimum repeater nonlinearity will 
be the topic of Section IV, with conclusions provided in 
Section V. 

II. MATHEMATICAL ANALYSIS 

The communication system shown in Fig. 1 has been 
recently investigated by Jain [4] and Davisson and Milstein 
[2]. Our treatment in this paper will simplify and extend 
some of the derivations and results obtained in [4] and [2], 
as well as many new results including entirely new material 
on the optimization of the nonlinearity. 

A. Calculation of Receiver Output 

The input to the limiter in Fig. 1 consists of a binary 
phase-modulated signal of frequency /o and amplitude A 
plus zero-mean, stationary Gaussian noise of rms value a^. 
The bandpass filter preceding the limiter is assumed to be 
wide enough to pass the signal with negligible distortion and 
to limit the uplink noise to a bandwidth that is small com- 
pared with the center frequency of the filter. The limiter 
input may be expressed as 

fi(t) = A cos [coo? + 0(0] + x(t) cos Wot - y(t) sin COQ? 

= R(t) cos [coot + (^(0] (2) 

where the envelope R(t) and the phase ^(0 are given by 

R(t) = \/lA cos e(t) + x(t)f + y\t) 

y(0 (j){t) = arctan 
A cos e(t) + x(t) (3) 

During any bit interval, 9(t) is either 0 or n, depending 
upon whether a mark or space is being transmitted. 

The bandpass limiter is assumed to be ideal in the sense 
that its fundamental-zone output/o(0 is given by 

/o(0 = cos [coo? + ^(0] (4) 

i.e., envelope variation has been completely removed 
without distorting the phase modulation. 

The signal is then transmitted to the receiver and noise is 
added to it on the downlink in the receiver front end. We 
assume this noise is stationary, zero-mean, Gaussian of rms 
value (T, and is independent of the uplink noise. Hence, the 
receiver input may be expressed as 

g{t) = a cos [ojot + ^(0] + w(0 cos co^t - v{t) sin Wot.   (5) 

The amplitude a of the signal is determined by the amplifica- 
tion in the repeater and the downlink losses in the link 
following the limiter. 

At the receiver the signal g{t) is multiplied by the correctly 
phased reference 2 cos coot and then low-pass filtered to 

remove the double-frequency components. The filter output 
is given by 

z(t) = a cos (t>{t) + u{t). (6) 

B. Calculation of Error Probability 

At the receiver output, the decision as to whether a mark 
or a space was transmitted is made on the basis of whether 
the filter output at the sampling instant is positive or neg- 
ative. In order to calculate the probability of error of the 
decision, we need to determine the probability density func- 
tion q{z) of the filter output. This is obtained directly from 
(6) as the convolution of the probability density function 
p{4') of the phase and a Gaussian density function for the 
inphase downlink noise. The result is 

9(2) = 
1 

s na r^^i — (z — a cos (j))^ 

2? 
p(</))#   (7) 

where a^ is the noise power at the receiver input. This 
integral representation for g(z) will be convenient for the 
calculation of the error probability. 

We assume that each transmitted symbol is statistically 
independent of its predecessors and that mark and space 
signals are equally probable. Hence, since the noise at the 
low-pass filter output has a zero-mean value, the probability 
of error P^ of a decision is equal to the error probability 
for either a mark or a space signal. Thus 

•" e   —    "em  —   "es ■ (8) 

The probability of error in detecting a mark (6 = 0) is 
equal to the probability that the filter output will be negative 
at the sampling instant, viz.. 

V - o 

q{z) dz. (9) 

Substituting the expression for ^(z) in (9) and changing the 
order of integration yields 

p(<^) 
s'lncF 

exp ' —(z — a cos (^)^ 
. 2? 

dz d4).   (10) 

The integral in the brackets can be expressed in terms of the 
error function [5]. Thus (10) may be written as 

•2^ 

= ^n^-"'(i;^"^) p{4>) d<t> 

= ^ - ^ I " erf L^ cos <t>^ pi4>) d<i>.       (11) 

Clearly, with no noise on the uplink, the error probability 
is unaffected by the presence of the limiter and is simply 

Pe = -2 — ^tvf {ajyjla). Likewise, with no noise in the 
downlink the limiter will have no effect on P^. This is easily 
seen by expressing cos (j>{t) in (6) as {A + x{t)'\jR{t), and 
noticing that P^ is the same as the probability of the inphase 
component x{t) of the uplink noise exceeding the signal 

amplitude A, which is simply P^ = ^ - \ Qvi{Aj42 tr,). 
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To-evaluate the integral in (11), we use the representation 
for the error function [6] 

„2„2\ 
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The integral in (16) may now be evaluated with the aid of 
(17). The result is [10] 

erf I COS 4>\ = - 
Vv2 (T /       ^ 

'°° sin (va cos (j)) exp i^)^' /: 
(12) 

which is seen by Plancherel's theorem to be correct. This 
representation is convenient for expressing the error func- 
tion in the form of a Fourier series. Using the expression 

sin (va cos (^) = 2 X (- 1)"J2„+ i(fa) cos (2« + l)<p    (13) 
n = 0 

COS (2n + l)0p(^) d<t> 

W2.ff/ 

(2« + 1)!        \        2 
2n + 2, 

2(TiV 
(18) 

we find that (12) becomes 

erf {^oosA = ^t (-1)" r 

■ exp I 1 ay 

•/2«+l(l^«) 

cos {In + \)(j>.   (14) 

The integral here is attributed to Weber and Sonine, and its 
solution is given in terms of confluent hypergeometric 
series [7]. The result is 

erf 

^2 £ (-l)T(n + i) 
IV2J 7r« = o     {In + 1)! 

• iFi /K + -, 2n + 2,  - —A cos {In + \)(j>   (15) 

where iFi(-) is the confluent hypergeometric series and 
r(-) is the gamma function. Substituting (15) in (11) yields 

Substituting (18) in (16), we obtain the probability of error 

_ 1 _ 1 V (-l)"-r(n + l)-r(n + |)   ,„+i .   2„+i 
^"2      nh [(2n + l)!r 

• iFi(n + i, 2n + 2, -pi^) 

• if i(n + i 2« + 2, -Pi") (19) 

where Pi^ = A^lla^^ = limiter input or uplink signal-to- 
noise ratio, and pj^ = a^/2o-^ = Pf/ff^ = receiver input or 
downlink power-to-noise ratio. Note that P, contains both 
signal and retransmitted limiter input noise power. We now 
show that the series in (19) is convergent. Since 

\iFi{a,b,-x)\ < 1,       for Z» > c> 0 < ;c      (20) 

the series in (19) will converge if the dominating series 
obtained by setting both confluent hypergeometric functions 
equal to one converges. The resulting series is absolutely 
convergent for all values of Pi^ and P2^, as can be shown 
easily by d'Alembert's ratio test for absolute convergence 

lim 
u„ 

v„ 
= lim 

o-*oo 

(n + i)(n + I) 
(2n + 3y ■ (2n + 2)" 

(PiPi)' = 0. 

(21) 

P   ^ 1       1 y  (-1) 
2      n n=o       (2 

" • r(n + i) /   a   \ 
In + ly.      X^/lJ 

cos (2n -I- 1)^ • p((^) d(t>. (16) 

An alternative expression for Pg is obtained by using the 
relationship 

iFi(« + i,2n + 2, -p^) 

= 22£<=£|^^^-[/.(f)+ ;...(!)] (22, 

where /„(•) is the modified Bessel function. 
The expression for P^ then becomes 

A number of equivalent representations for the prob- 
ability density function ;)(^) are known in the literature 
[8], [9]. They would lead to equivalent but different ex- 
pressions for the error probability. In this paper we shall 
consider two different representations for p{(t>) and derive 
the corresponding expressions for the error rate. First, we 
consider the integral representation for /?(</>). When a mark 
is transmitted, i.e., 6{t) = 0, p{(j)) is given by [9] 

P„ = 
1      Pi- Pi exp -(PI' + Pz'il   £    (-1)" 

11=0 2n -I- 1 

(23) 

?(</>) = 
exp (-A^/2<7i^) 

Ina^^ 

Jo 
R exp 

-{R^ - 2AR cos (j)) 

2a,^ 
dR.    (17) 

Next we derive an expression for the error rate by using 
a closed-form representation for the probability density 
function of the phase [9] 

p(<^) = ^^P(~^'') +     PL. cos (/. exp (-pi^ sin^ </.) 
2n V 471 

•[1 + erf(pi cos (/.)].   (24) 
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Substituting (24) in (11) and performing the integration 
provides an expression for the error probability in terms of 
Rice's le function [11] 

Pe = i[l - Vl - k^ leiKxy] 

where 

and 

k = Pi' Pi 

Pi' + Pi^ 
X = 

Pi' + P^ 

(25) 

(26) 

:,x) =   r  Qxp{-t)-I^{kt)dt. (27) 

exp (-x), and the error 

(28) 

/e(/c 

When pi = p2, /e(0,x) = 1 
probability is then simply 

P, = iexp(-pi2). 

C. Asymptotic Values for the Error Probability 

It is interesting to examine the behavior of P^ for small 
and large SNRs. An asymptotic result for p^ and pj much 
less than unity is obtained by retaining only the first term 
of the infinite series in (19) and the first term of the confluent 
hypergeometric series appearing in it 

Pe ~ Kl - P1P2),       forpiP2 « 1- (29) 

When both p^^ as well as pi^ - p^^ are large, we can 
find an asymptotic expression for P^ by using the expansion 
of Ie{k,x) for large x [11] 

/e(fc,oo) 
Vl -k^ 

in (25). We thus obtain 

[1 

 (1 - erf Vx(l - fc)) 
1 - fc^ \ /. 

(30) 

V2/c(l - fc) 

Vpi^- Pl 

_ Pi  .    exp(-p2^) 

erf P2] 

for pi > P2 » 1 

(31) 

2P2   ^n{p,^ - p^^) 

andpi^ _ p2^ » 1.   (32) 

When pi^ is very much larger than p^^, (31) reduces to 

Pe = i[l - erfp2],       forpi ^ 00 (33) 

which is the expected result for ideal limiting in the absence 
of uplink noise. Because P^ is a symmetric function of pi^ 
and P2^, the corresponding results for pj^ > pj^ are ob- 
tained by simply interchanging p^^ and p^^ in (31)-(33). 

III. NUMERICAL RESULTS 
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The results of numerical evaluation of the error rate are 
shown in Fig. 2 as a function of pj^ for various values of    ^'S- 2.   PSK error rate as function of limiter input signal-to-noise 
P2^ Similar curves for P, as a function of P2^ with p,^ as ""''^ ^°' '°"''^"* "^'"^ °^''"''"'* Dower-to-noise ratio, 
the parameter are obtained by merely interchanging the 
labels pi^ and P2^ in Fig. 2, since the expression for the 
error rate is symmetric in p{^ and P2^. Both (19) and (23) 
were programmed, and the results obtained were identical. 
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as expected. Equation (25) was not used, because we had 
not yet discovered it. When both pi^ and p2^ are large, 
computation of the error rate from either (19) or (23) 
becomes difficult, and it is important that the series in (19) 
and (23) be computed very accurately. We found that (23) 
was easier to use than (19) at low error rates because the 
computation of the Bessel functions in (23) requires fewer 
terms of their power series expansion than do the two 
hypergeometric functions appearing in (19). The results 
obtained by using the asymptotic expression (32) for P^ 
when pi^ and pj^ are both large were found to be in ex- 
cellent agreement with the numerical evaluation of (23). 

The computation of the error rate from (25) would re- 
quire accurate calculation of the le function defined by (27). 
Rice's table [11] for the le function does not give sufficient 
coverage for calculation of error rates under conditions of 
practical interest. The le function can be calculated by 
either numerical integration of (27) or from the series given 
by Rice [11] 

Ie{k,x)=  t (kl2f"^A„ 
n = o n! n! 

exp (— x). 

A. Comparison with Linear-Repeater Performance 

The dashed lines in Fig. 2 show the error rate for a linear 
system, i.e., a system with the limiter replaced by a linear 
repeater having the same average output power as the 
limiting repeater in Fig. 1. The error probability for a linear 
system, which has a Gaussian noise distribution at the 
receiver output, is 

r                           2 ,,2n 
X X 

A„ = 1 - I  + X + —+ ■ 
2! 

■ -1- 
(2n)! 

P, = i[l -erf(p/V2)] 

where p^ is the receiver output SNR. The repeater output 
power P, = a^jl is divided between the signal and the 
uplink noise in proportion to their power levels at the 
repeater input. At the receiver the received waveform is 
processed by using correlation detection with baseband 
zonal filtering and sampling. The correlation operation 
suppresses the quadrature components of both retransmitted 
uplink and downlink noise, thereby providing a 3-dB im- 
provement in the SNR at the receiver output over the SNR 
at its input. The output SNR for the linear system is thus 

P' = 2 P,'P2' 

1 + Pi^ + Pi 

Using two terms of the power-series expansion of the 
error function in (34) and approximating (35) as p = 

V2 P1P2, we find that the error probability at low SNRs 
with a linear repeater is approximately 

H- 

For a hard-limiting repeater the corresponding expression 
is given by (29). Thus we see that at low SNRs the Hnear 
repeater yields better performance than the hard limiter 
(although both do badly). The latter requires a 1.05-dB 
increase in the product of the two SNRs to obtain the same 
error probability. 

Fig. 2 shows a bottoming of the error rate for both a 
linear and a hard-limiting system representing an irreducible 
error probability that depends on the noise present either at 
the repeater or the receiver front end, depending upon 
whether the abscissa is pj^ or Pi^. It is seen in Fig. 2 that, 
as Pi^ tends to infinity, both systems tend to the same 
limit given by (33). The significant difference, however, is 
that a hard-limiting system approaches the limit much 
faster, i.e., at lower values of Pi^, than a linear system for 
any given value of pi^. 

At large values of pi^ and p2^ the error rate for the linear 
system is obtained by using the first term of the asymptotic 
expansion for the error function in (34) 

"^^ ~ 2 V   np^p^   '"P I     p,^ + p^) ' 
for large pi and pi-   (37) 

The dominant factor here is the exponential, while in the 
case of the limiter with p^ > p2 it is exp (—P2^) as in (28) 
and (32). Comparing the respective exponents, we see that 
the limiter affords an SNR advantage of 1 + Pz^lPt^ ^ 2, 
i.e., at most 3 dB in each of the two links. 

If the larger of the two SNRs, Pi^, is increased while 
the smaller one, pz^, is held fixed, then we would obtain the 
same exponent for the linear system in (37) as with the 
limiter when Pi^ is infinite. In this sense the limiter ex- 
hibits an unbounded SNR advantage. For example, we see 
from Fig. 2 that for P, = 2.4 x 10"^ with P2^ = 8 dB 
there is a 9-dB horizontal spread in the value of pi^ between 
the solid and dashed curves. However, just increasing pi^ 
to 10 dB for the linear system suffices to obtain the same P^ 
with the same Pi^ = 12.5 dB, and so the limiter affords 
only a 2-dB advantage in this sense. In fact, whenever the 
larger SNR exceeds the smaller by more than 3 dB, it would 
suffice to increase just the smaller one for the linear system 
by less than 3 dB. When the larger SNR exceeds the smaller 
by less than 3 dB, both SNRs must be increased to 3 dB 
more than the smaller. 

Springett and Simon [12] have shown that for a hard- 
limiting system, in the absence of downlink noise, a large 
SNR improvement p^ « 8 pi'^ is achieved at large values 
of pi^. Unfortunately this improvement in p^ has no 
bearing on the error rate. 

IV. OPTIMUM NONLINEARITY 

So far we have supposed that the nonlinearity is a hard 
limiter, delivering a sine wave of amplitude a to the receiver 
regardless of its input amplitude R. More generally, a will 

(36)    be a function of R, say ah{ARja{^), the constant factors a 
and Aja^^ being included here to simplify the form of our 

(34) 

(35) 
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analysis. To take account of this nonlinearity it is only 
necessary to replace a in (11) by ahiARja^^). Using (17) for 
p{4i) in (11) and substituting r = AR/a^^, we thus get 

'■'-2 

1      exp 

^Pi^      Jo    h 

exp 
4rpi^ cos (j)) 

w (f-*) erf I '-^^ cos (j) \ dr d(l). 

(38) 

Since r has a Rice-Nakagami distribution, the average 
repeater power delivered to the receiver is the mean value 

This function increases linearly from zero for small values 
of r, and it asymptotically rises toward the value L for large 
r; i.e., (41) represents a sort of soft limiter, and the larger 
the uplink signal-to-noise ratio, the harder this limiter be- 
comes on account of the factor A/ai^ in the argument of A. 
It is remarkable that (41) is the same nonlinearity [13] that 
maximizes the output signal-to-noise ratio of the repeater 
output. 

More generally, we see from (40) that h(0) is always zero, 
that 

/j(r) = -Lr 
2 

-ill + AL 

64 
r' + 

,') ^'^ r ^xp {^-j^}j U{r)h\r) dr. Pt = :r^exp(-p 

(39) 

We now seek that h(r) that minimizes (38) under the con- 
dition that (39) has a prescribed value. Treating the integrals 
with respect to r as summations over discrete values of 
h(r), we solve this problem by simply differentiating (38) 
and (39) with respect to the value taken by h at one specific 
value of r. Introducing the Lagrange multiplier -1/ 

i\/2n a^L) for the derivative of (39), setting the sum of this 
plus the derivative of (38) equal to zero and cancelling out 
the common factor 

and that, as r -* co, h{r) approaches the value satisfying 
the equation 

h{co) = L exp [-i/!^(oo)] (42) 

exp(-Pi^) 

47rV27r 
exp 

(-^) 
dr 

as the integrand of (40) then peaks at 0 = 0 and the right- 
hand side is asymptotically 

Lexp[-i/!2(co)]-/i(r). 

Thus, whenever the uplink signal-to-noise ratio is very 
large, a hard limiter is the optimum nonlinearity. In this 
case we can determine L by writing (39) in the form p^^ - 
\h^{co) and substituting (42). Hence, for large py^ we have 

L = Sp2 exp (P2^). (43) 

When L is large, we have 

we thus obtain [13] 

h{r)Kr) 

h(r) 2.3/ 
Lr 

(44) 

L   C^" 
= —        exp (r cos (j)) exp (-^h^{r) cos^ 0) cos (j> dcj) 

2n Jo 

provided that (44) is large in comparison with r + 1. To 
see this notice that a large L implies a large A(r), which 
causes the integrand of (40) to be negligible except near 

21 r-T/2 4> = i^J,   where   cos 4> K ^n - (j).   For   large   downlink 
= — sinh (r cos ^) exp { — ^h^{r) cos^ </>) cos <j) dcf).     signal-to-noise ratios, therefore, the optimum nonlinearity 

^ "^0 (44) rises steeply from zero for small r, reaches a maximum 
where r = 1.61, and then falls toward the value satisfying 
(42). This is, in fact, qualitatively the same as the output- 
versus-input characteristic of a traveling-wave tube. 

To see that the h(r) determined by (40) must yield a 
minimum rather than a maximum error probability, we 
notice that P^ can be made arbitrarily close to unity simply 
by putting /2(r) = 0, for all r, except in some interval, 
which is allowed to shrink to zero width. Because such an 
h(r) becomes a kind of delta function rather than a proper 
function, it fails to show up in our solution, and so we ob- 
tain only the optimum h(r) from (40) and not the pessimum. 

(40) 

Functions h(r) satisfying (40) can be found by solving for 
L and determining L as a function of fi and r. The contours 
over the (h,r) plane along which L is constant describe the 
required functions. 

To determine what constant value L must have, the 
resulting h{r), which depends on L, is substituted into (39), 
and L is found as a function of p^^ and PJa^ = p2^. From 
(40) we see that h(r) = 0 when L = 0 and that h(r) is an 
unbounded, increasing function of L for every r. It follows 
from (39) that L = 0 when p^^ = 0 and that L is an 
unbounded, increasing function of pj^- 

Although the solution of the integral equation (40) for 
h(r) is not a straightforward matter, it can be solved 
analytically in extreme cases. For example, when L is small, 
h too is small, and the second exponential in the first line 
of (40) can be replaced by unity, giving us 

h{r) = LI,ir)IUr). (41) 

V. CONCLUSIONS 

General expressions have been derived for the prob- 
ability of error in detecting a binary phase-modulated 
sinusoidal signal after transmission through a hard-limiting 
channel. The receiver employs cross correlation followed by 
zonal low-pass filtering for the detection of the signal. The 
results are compared with those for a linear channel and a 
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cort-elation receiver not using postdetection integration. The 
error rate is found to be smaller than that of a linear channel 
for the range of SNRs that will be of interest in practice. In 
the absence of either repeater or receiver input noise the 
error-rate expression is identical with that for a linear 
channel with no postdetection integration. 

The results of this paper can also be extended as in 
Lyons [3] to include the effect of postdetection integration 
via multiple sampling and majority decision. This prob- 
ability of error is then given by the binomial distribution 
into which we need only to substitute the error probability 
for a single sample that is obtained in this paper. The result 
is a monotonic function of the error probabiUty for a 
single sample, and therefore the conclusions reached in this 
paper concerning the helpfulness of limiting with a single 
sample detection also apply with postdetection integration. 

The optimum nonlinearity has been determined and turns 
out to be a limiter whenever the uplink SNR is large. 
Remarkably, this optimum nonlinearity behaves like a 
traveling-wave tube when the downlink SNR is large, with 
its output falling slowly as the input level increases beyond 
a certain value. It may be mentioned that limiting can 
similarly be shown to reduce the error probability (although 
to a smaller extent) for quadriphase and higher-order 
phase-shift-keying. 
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